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Abstract 
Applications of artificial intelligence have been gaining extraordinary traction in recent years across innumerable 

domains. These novel approaches and technological leaps permit leveraging profound quantities of data in a manner 

from which to elucidate and ease the modeling of arduous physical phenomena. ExoAnalytic collects over 500,000 

resident space object images nightly with an arsenal of over 300 autonomous sensors; extending the autonomy of 

collection to data curation, anomaly detection, and notification is of paramount importance if elusive events are desired 

to be captured and classified. Efforts begin with rigorous image annotation of observed glints, streaking stars, and 

resident space objects; synthetic plumes were generated from both Generative Adversarial Networks as well as manual 

image augmentation techniques. Preliminary results permitted the successful classification of observed debris 

generating events from AMC-9, Telkom-1, and Intelsat-29e. After initial proof-of-concept, these events are 

incorporated into the training pipeline in order to characterize potentially unknown debris generating or anomalous 

events in future observations. The inclusion of a visual tracking system aides in reducing false alarms by roughly 30%. 

Future efforts include applications on both historical datamining as well as real-time indications and warnings for 

satellite analysts in their daily operations while maintaining a low probability of false alarm through detection and 

tracking algorithm refinement. 

1 INTRODUCTION 
An abundance of papers, proposals, and presentations regarding deep learning have inundated the recent literature of 

numerous conferences. Typically, these papers introduce novel methods to simplify arduous tasks with no closed-

form mathematical solution. Convolutional, Temporal Convolutional and Recurrent Neural Networks (CNNs, TCNs 

and RNNs)[1], Generative Adversarial Networks (GANs)[2], Reinforcement Learning (RL)[3], and attention-based 

decoder algorithms have been developed to solve tasks from image classification and segmentation, maneuvering 

target tracking, language translation and prediction, speech synthesis and emulation, as well as robotic action 

emulation. In the realm of space situational awareness (SSA), previous work has been completed for sensor tasking 

using RL [4], maneuver detection using basic CNNs [5] and anomaly emulation and detection with static-pattern 

GANs and CNNs [6]. ExoAnalytic Solutions collects over 500,000 resident space object images nightly using their 

arsenal of over 300 ground based autonomous telescopes. With this enormous onslaught of incoming imagery and 

information, dissemination and discrimination are of paramount importance to prevent operator information 

overload. Creating a self-perpetuating anomaly detection algorithm improves timeliness, detectability, and 

unexploited anomalous resident space object (RSO) behavior. As opposed to relying on a static image classification 

system that is operator supervised and disseminated, ExoAnalytic utilizes a semi-supervised training architecture 

composed of region proposals for image segmentation and anomaly detection. This paper incorporates additional 

stringency to the anomaly detection task. Instead of characterizing the unresolved satellite image as a whole, a 

region proposal neural network explicitly labels regions in the image with their proposed classification and 

confidence. For example, close-approaches, debris shedding events, and star-streaking can all be annotated with a 

probability and pinpointed on the image itself. This method, when utilized iteratively, allows for the incorporation of 

temporal context into decision-chains. This method produces an anomaly detection algorithm less susceptible to 

false alarms as valuable contextual information is inferred from integration through time using the proposed regions 

from the neural network. 
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2 BACKGROUND 
CNNs have inundated the deep learning literature in the past decade where they have successfully and continually 

beaten all previously held image classification benchmarks. Additionally, these networks have been honed using 

various elaborate methods such as Neural Architecture Search [7] ever increasingly complex network layers, and 

novel feature extraction techniques. Typically, CNNs targeted performance metrics are the correct classification of 

imagery with the goal being to categorize, label, or highlight existing components within datasets. Labeling MRIs as 

anomalous and reporting to a physician, classifying the breed of dog in an image, and identifying the existence of 

dangerous pests in beehives are all practical applications of CNNs in industry.  

While labeling images in their entirety is useful for extracting information, identifying specific regions of pixels 

within the image proves more useful in intelligence applications. Instead of having the operator inspect flagged 

images for the occurrence of the class, this portion of labor will instead be completed by the neural network. This 

application was first introduced by [8] and has since been dramatically improved. Various renditions have been 

implemented and deployed to an array of problems from self-driving vehicles, pedestrian tracking, and less critical 

ones such as identifying the Millennium Falcon. 

3 CLASSIFICATION ALGORITHM 

3.1 ANNOTATION 
The primary task of initiating the algorithm development framework is the proper construction of a supervised 

learning task. Because the goal is to explicitly and simultaneously propose, classify, and regress bounding box labels 

to objects of interest within an image, appropriate ground-truth labels are necessary. To label a region in an image, 

five variables are required: object class, box centroid in X and Y, and the box dimension in X and Y, in pixels. 

𝐿𝑎𝑏𝑒𝑙 = (𝑖𝑛𝑡(𝑜𝑏𝑗𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠), 𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 , 𝑦𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 , 𝑥𝑤𝑖𝑑𝑡ℎ , 𝑦𝑤𝑖𝑑𝑡ℎ) 

 

Additionally, where multiple objects occupy a single image, multiple labels are required. The result is an 𝑁𝑙𝑎𝑏𝑒𝑙𝑠 ∗
 𝑙𝑎𝑏𝑒𝑙𝑤𝑖𝑑𝑡ℎ text file for each image in the dataset. 

                       Table 1. Example Image Annotation 

 

 

 

 

 

The detections in Table 1 are coordinates normalized with respect to the image in Fig. 

1. Accordingly, the detection algorithm is capable of operating on various-sized input 

images given the standardized label format. 

 

 

 

The dataset used in subsequent experiments began with 1,000 hand-selected and annotated images. This process 

proves to be arduous in both time and discernment of 

specific classifications. For example, when labeling 

different regions, one must consistently annotate similar 

ambiguous patterns and occurrences throughout the 

dataset. This becomes problematic when deciding to label 

a smudged RSO as a “streak” or as two closely space 

objects (CSOs). Examples of this can be seen in Fig. 2 

and Fig. 3. 

 
 

 

 

 

 

Class X Coord. Y Coord. X Width Y Width 

0 0.868320 0.443972 0.280415 0.522862 

1 0.484716 0.511466 0.078608 0.090849 

2 0.965095 0.414408 0.082109 0.164061 

Figure 1. Image used for 

Annotation Table 

Figure 2. CSO Figure 3. Smudged RSO 
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3.2 MODEL CONFIGURATION 
 

 
Figure 4. Multiscale Architecture for Small Objects 

 
For classification, the standard CNN archetype is leveraged and utilized as shown in Fig. 4. Specifically, the YoloV3 

[8] architecture is used as a fundamental backbone for object segmentation. Additionally, the Darknet [9] neural 

network library is used for all training and inference. Indeed, architectural best-practices are abided by in order to 

maximize the downstream classification performance by metrics of both accuracy and timeliness through the 

reduction in floating point operations. Primarily, the network utilizes residual connections, batch normalization, and 

smaller convolutional filters to achieve the aforementioned outcomes.  

 

Residual connections, also known as identity connections [10], are the operation of mapping the layer input through 

a nonlinearity while adding the original input to the nonlinearity output. This operation increases the flow of 

unhindered imagery information to deeper filter layers while also increasing the gradient availability for successful 

backpropagation. 

 

Batch normalization is a statistical technique employed in most DNN applications that are non-recurrent [11]. Z-

normalizing one’s dataset is a beneficial preprocessing tasks for reducing the variance in network weights and 

biases. I.E, learning weights with smaller variances also for faster model convergence and more generalization. 

However, once the data is input into the model, as each additional nonlinear operation occurs, the data is no longer 

consistently z-normalized. Therefore, after each major set of nonlinearities, the dataset can be z-normalized again so 

that subsequent layers are working with whitened data. Because the data is only passed in a minibatch at a time 

during training, the batch normalization mean and standard deviation must be trainable network parameters where 

the proper convergence value is the training population’s mean and standard deviation at that specific layer in the 

network. 

 

The input is a dimension of M by M pixels where M must be a multiple of 32. For our application, images used for 

classification are 32 pixels. As depicted in Fig. 4, convolutions with increasing depth are succeeded by down 

sampling and batch-normalization layers until the image dimensionality is M by V. V is the necessary output 

dimensionality defined by the number of classes desired in the output. 
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3.3 OBJECTIVE FUNCTION 
 

Equation 2 

 

 

 

 

 

Equation 2 depicts the multifaceted objective 

function used for optimizing the image 

classification, localization, and confidence 

projection. Because each of these loss 

components can be explicitly untangled, they 

will be explored and explained individually 

for further clarification. 

 

 

3.4 CLASSIFICATION 
 

While most architectures are required to classify the entire image as 

belonging exclusively to a single class, 

the task at hand requires multiple 

classes for numerous regions within the 

image. This is accomplished by 

subdividing the image into a gridded 

mask like Fig. 5 and assigning 

classification probabilities to each of 

these regions like Fig. 6.  

While this single gridded mask could 

be sufficient for the task, using more 

proves more granular object segmented 

image is produced. 

 

 The output layers are scaled and 

reconfigured in such a manner that this gridded mask is applied at a multi-

scale level; this allows for multiple network interpretations in a single pass. 

This technique can greatly impact the network’s ability to reason with objects that appear at various scales 

throughout training and inference. More specifically, Equation 2 portrays the cost of image classification. If an 

object exists within a predicted bounding box, the sum squared difference in probabilities is weighted by how much 

the bounding box overlaps the true target object. 

 

 

 

 

 

 

 

 

 

 

 

 

Loss = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗𝐵

𝑗=0
𝑆2

𝑖=0 [(𝑥𝑖 − 𝑥�̂�)
2 + (𝑦𝑖 −  𝑦�̂�)

2] + 

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

[√𝑤𝑖 − √𝑤𝑖
̂ )

2

+ (√ℎ𝑖 −  √ℎ𝑖
̂

)
2

] + 

∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 −  𝐶�̂�)
2𝐵

𝑗=0
+  

𝑆2

𝑖=0

 

𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 −  𝐶�̂�)
2𝐵

𝑗=0
+

𝑆2

𝑖=0

 

𝜆𝑛𝑜𝑜𝑏𝑗 ∑ 1𝑖
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) −  𝑝𝑖(𝑐)̂)
2𝐵

𝑐 𝜖 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0

 

Figure 5. Initial Grid Mask 

Figure 6. Grid Class Likelihoods 
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3.5 LOCALIZATION 
 

Once the probability regions are proposed, the next task is to assign bounding 

boxes to these specific regions. The output of these bounding box proposals is 

a seemingly chaotic, but well-suited overlay of boxes. This layer is scored on 

how well the predicted boxes overlay the annotated truth boxes. This score is 

called “objectness” and is expressed by Equations lines 3 and 4. The former 

sums the square of the difference in predicted confidence scores for each box 

where an object truly lies over the entire image. The latter performs the same 

but over the background portions where no objects lie. It is additionally 

weighted to assure the model learns the proper interpretation of regions in the 

image that are not classes, but the weight is small so that this portion of loss 

does not dominant the landscape detrimentally. 

As Fig. 7 depicts, there are now numerous boxes that contain the desired 

information; it must be dealt with in the proper manner such that one obtains 

the desired and best-fitting result with maximal accuracy and human 

interpretability. 

3.6 NON-MAXIMAL SUPPRESSION 
Fig. 8 displays the predicted bounding boxes and a subset of the class 

probabilities coded by color. The center region contains two highly 

overlapped regions predicting the same object class with difference 

confidences. Suppressing and combining these redundant portions is 

necessary in order to reduce the interpretability burden on the analyst.  

Overlapping regions with an intersection over union (IoU) greater than a user-

defined threshold, typically 0.5, are sorted descendingly by the computed 

objectness score. IoU is calculated as the area of intersection of the predicted 

and truth bounding boxes divided by the unionized area of the predicted and 

truth bounding boxes as shown in Fig. 9. 

This process of sorted and 

selecting the highest 

probability with the highest 

IoU is iterated until all 

detected objects have been 

accounted for.  

The result of this non-max-suppression 

can be observed in Fig. 10. This process 

is very algorithmic and rigid; however, it 

is a user-adjustable portion of the 

algorithm. Because this threshold is user-

adjustable, it can be adapted to problems 

where either precision or recall is desired 

more. Precision represents the model’s 

ability to only classify desired classes and not allow false alarms. Recall represents the 

model’s ability to classify as many of the desired class as possible while permitting false 

alarms. These metrics are shown below in Equations 3 and 4. 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
    Equation 3 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
    Equation 4 

 

𝐼𝑜𝑈 = > 0.5 

Figure 7. Proposed Bounding 

Boxes 

Figure 8. Predicted Bounding 

Boxes and Classes 

Figure 10. Non-Max-

Suppression Results 

Figure 9. Example Intersection over Union 
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Fig. 11 depicts the parameterization of this threshold from low to high from the upper left corner to the bottom right 

corner. Specifically, it ranges from 0.01 to 0.95 in roughly 0.1 confidence value increments 

 

Clearly, the leftmost results host far too many false alarms for a deployed system; however, the bottom right corner, 

in this image, seems to do exactly as desired. It encapsulates the necessary information to alert an operator of two 

objects and a likely star in the current image. Now that the algorithm has been discussed regarding its application to 

properly annotating, regressing, and suppressing for optimal performance, its application and ability to detect real-

world events is explored in subsequent sections. 

4 TRACKING ALGORITHM 
The detection algorithm can be interpreted as a measurement device of a scene; detections and features are extracted 

on a frame-by-frame basis where the frame’s boresight is focused on the primary RSO. Algorithm measurements are 

represented by (x, y) pixel coordinates, the width and height of the corresponding bounding-box, as well as the 

objectness score. Utilizing the Simple Online and Realtime Tracking (SORT) algorithm from [5], these observations 

are mapped to an appropriate temporal state-space model in order to perform multi-target tracking and association. 

The state-space is represented by pixel coordinates, bounding box aspect ratio and height as well as their respective 

velocities, (𝑥, 𝑦, 𝑎, ℎ, �̇�, �̇�, �̇�, ℎ̇). The Kalman Filtering scheme used for track prediction and updating is a simple 

linear model with static uncertainties in object position, velocity, and bounding box dimension. The state-transition 

and uncertainty are depicted in Equations 5 and 6 where (𝜎𝑥, 𝜎𝑦 , 𝜎𝑎, 𝜎ℎ , �̇�𝑥, �̇�𝑦 , �̇�𝑎, �̇�ℎ)  

are (
1

160
,

1

160
, 1𝑒 − 2,

1

160
,

1

240
,

1

240
, 1𝑒 − 5,

1

240
) ∗ 𝑏𝑜𝑥ℎ𝑒𝑖𝑔ℎ𝑡  , respectively. 

 

Therefore, the larger a target’s bounding box is, the larger the transition uncertainty is from frame to frame. 

𝐴 =  

1 0 0 0 𝑑𝑡 0 0 0
0 1 0 0 0 𝑑𝑡 0 0
0 0 1 0 0 0 𝑑𝑡 0
0 0 0 1 0 0 0 𝑑𝑡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,  𝑄 =  

𝜎𝑥 0 0 0 0 0 0 0
0 𝜎𝑦 0 0 0 0 0 0

0 0 𝜎𝑎 0 0 0 0 0
0 0 0 𝜎ℎ 0 0 0 0
0 0 0 0 𝜎�̇� 0 0 0
0 0 0 0 0 𝜎�̇� 0 0

0 0 0 0 0 0 𝜎�̇� 0
0 0 0 0 0 0 0 𝜎ℎ̇

Equation 5 and 6 

SORT utilizes a cascading Hungarian assignment algorithm for the multi-target matching. This approach minimizes 

the Mahalanobis distance between assignable tracks and accounts for measurement frequency in these assignments. 

The latter is a notably important feature because less frequently observed tracks are more easily associable to 

incoming confirmed tracks due to the spread of probability mass over the state-space.  

In addition to the cascading Mahalanobis metric, SORT can leverage the latent features from a CNN. For example, 

the final outputs may be pixel coordinates, but the layers just prior to this output can serve as meta-information from 

Figure 11. Altering Suppression Threshold 
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which to associate tracks on a deeper level. The current tracking implementation does not utilize this capability, but 

it will be explored seriously in future works. 

 

While the original implementation of SORT was used primarily for pedestrian tracking, this implementation is 

observing another set of processes entirely. Target occlusion and spurious detections still arise; however, the most 

important differentiator is the multi-class tracking performance. Plumes, glints, and objects are of high interest; 

likewise, it is crucial to avoid false alarms when deciding whether to report warnings to the operator. Through 

incorporating a more rigorous track formation framework, these false alarms can be reduced significantly while still 

maintaining the ability of detecting these events. Fig. 12 and Fig. 13 depicts a sequence of frames with and without 

the tracking methodology applied to the sequence. The results are a smoother frame-to-frame bounding box scaling 

as well as less spurious object detections. Within the six sample frames, there is a 37.5% decrease in spurious tracks 

formed as a result of the tracker. Over the course of a night, this reduction aids significantly in reducing false alarms.  

 

 
Figure 12. Intelsat-29e without Tracker 
 

 
Figure 13. Intelsat-29e with Tracker 
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5 ANALYSIS OF RESULTS 
The results presented below come with an associated and important caveat; the network was never trained on 

imagery collected from these events or any other debris shedding events. The network was exclusively trained using 

nominal operation patterns alongside synthetically generated imagery to include debris-like clouds and CSOs. 

5.1 TELKOM-1 
August 25th, 2018 marked the occurrence of a dramatic antenna anomaly for geostationary satellite Telkom-1. The 

timeline of interest alongside the multivariate metrics captured using the chip segmentation algorithm are portrayed 

in Fig. 14. 

 

As Fig. 14 displays, there were indications of debris prior to the dramatic material ejection observed at roughly time 

48 minutes. Subsequent to the ejection, a field of debris fills the surrounding area with a detectable cloud. Both the 

ejection and emitted cloud are detectable without prior knowledge. Additionally, a piece of dim and tumbling debris 

was tracked traveling vertically in the frame as indicated by the “multi-object” time series. 

 

 
Figure 14. Telkom-1 Timeline of Events 
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5.2 AMC-9 
The first photometrically documented debris generating event captured is that of AMC-9 on July 1st, 2017. 

Immediately preceding the event were a series of glints; these glints are uncharacteristically bright and are not a 

result of seasonal and anticipated glinting due to the solar declination angle. CATARACTS detects these glints and 

subsequently detects a plume track at 280 minutes since June 30th, 2017 at 23:28:25 UTC. Subsequent to this, there 

are numerous other glints and a detectable and trackable object is tracked from the emitted plume. 

 

 
Figure 15. AMC-9 Timeline of Events 
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5.3 INTELSAT-29E 
From April 8th to April 11th, 2019, Intelsat-29e suffered several debris generating events with the culminating and 

catastrophic failure occurring on April 11th, 2019 3:37:12 UTC. The events preceding the final spectacle were 

innocuous in comparison; nevertheless, they were characterized using astrometric and photometric standards. It was 

not until the final anomaly occurred that the entire series was analyzed, and other plumes were detected. This 

highlights a critical application for a plume detection algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.16 clearly shows the first event in the series to follow with what appears to be a detected debris field around 

Intelsat-29e followed by a more abrupt plume and glint event. Over 24 hours later, Fig. 17 shows one of numerous 

periodic glints; however, this glint was followed by a trackable object emerging from the satellite itself. Similar to 

April 8th, Fig. 18 display an additional expulsion of material and glinting behavior. Fig. 19 depicts the catastrophic 

failure of Intelsat-29e. The fifth chip in the sequence is an off-center chip where the object to the right is Intelsat-29e 

and the center object is a piece of expelled debris being tracked.  

 

Figure 16. April 8th, 2019 1:21:48 UTC 

Figure 17. April 9th, 2019 3:53:06 UTC 

Figure 18. April 10th, 2019 7:46:40 UTC 

Figure 19. April 11th, 2019 3:37:12 UTC 
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6 IMPLICATIONS 

6.1 DATABASE MINING 
The completion of a tool that is capable of rapidly scouring, filtering, and reporting specific photometric events of 

interest is a powerful capability when paired with an insurmountable volume of data. ExoAnalytic Solution stores 

over one petabyte of imagery; these images can be decomposed into image chips. The number of image chips 

available for analysis is on the order of 500 million and grows at an accelerating number each day with the addition 

of new sensors. While there are numerous cases of un-cued anomaly detection utilizing standard photometric and 

astrometric methods, this algorithm provides an additional dimension of robustness. Therefore, one can use this to 

iterate over the database and point to images where events of interest likely occurred. When events that were once 

unknown are uncovered, these can be further analyzed and additionally used to train the model. As a result, the 

algorithm will become increasingly capable at detection unseen anomaly types for the application of real-time 

indications and warnings. 

6.2 REAL-TIME INDICATIONS & WARNINGS 
Subsequent to the utilization of this algorithm for scanning the database for previously undetected maneuvers, the 

additional collected information can be leverage for future events. While the network will be the same architecture 

used, it will now need to be retrained to include the additionally labeled anomalous events that were verified by a 

human-in-the-loop. The newly trained architecture, which takes roughly four hours to converge, is deployable to a 

data-stream where it persistently stares, scans, and segments the focal planes and anomalous events of interest. 

These classifications are flagged for further analysis; ultimately, this process is recursive and unendingly improving 

as greater volumes of data are utilized.  
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